The Structure of the Consecutive Pattern Poset

نویسندگان

  • SERGI ELIZALDE
  • PETER R. W. MCNAMARA
چکیده

The consecutive pattern poset is the infinite partially ordered set of all permutations where σ ≤ τ if τ has a subsequence of adjacent entries in the same relative order as the entries of σ. We study the structure of the intervals in this poset from topological, poset-theoretic, and enumerative perspectives. In particular, we prove that all intervals are rank-unimodal and strongly Sperner, and we characterize disconnected and shellable intervals. We also show that most intervals are not shellable and have Möbius function equal to zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Möbius Function of the Consecutive Pattern Poset

An occurrence of a consecutive permutation pattern p in a permutation π is a segment of consecutive letters of π whose values appear in the same order of size as the letters in p. The set of all permutations forms a poset with respect to such pattern containment. We compute the Möbius function of intervals in this poset. For most intervals our results give an immediate answer to the question. I...

متن کامل

Discrete Morse theory and the consecutive pattern poset

We use discrete Morse theory to provide another proof of Bernini, Ferrari, and Steingrímsson’s formula for the Möbius function of the consecutive pattern poset. In addition, we are able to determine the homotopy type of this poset. Earlier, Björner determined the Möbius function and homotopy type of factor order and the results are remarkably similar to those in the pattern case. In his thesis,...

متن کامل

CONDITIONAL EXPECTATION IN THE KOPKA'S D-POSETS

The notion of a $D$-poset was introduced in a connection withquantum mechanical models. In this paper, we introduce theconditional expectation of  random variables on theK^{o}pka's $D$-Poset and prove the basic properties ofconditional expectation on this  structure.

متن کامل

On the Möbius Function of Permutations with One Descent

The set of all permutations, ordered by pattern containment, is a poset. We give a formula for the Möbius function of intervals [1, π] in this poset, for any permutation π with at most one descent. We compute the Möbius function as a function of the number and positions of pairs of consecutive letters in π that are consecutive in value. As a result of this we show that the Möbius function is un...

متن کامل

NETS AND SEPARATED S-POSETS

Nets, useful topological tools, used to generalize certainconcepts that may only be general enough in the context of metricspaces. In this work we introduce this concept in an $S$-poset, aposet with an action of a posemigroup $S$ on it whichis a very useful structure in computer sciences and interestingfor mathematicians, and give the the concept of $S$-net. Using $S$-nets and itsconvergency we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017